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Abstract--A boundary integral equation technique is presented for solving the low Reynolds number 
hydrodynamic interaction of a rigid body with a plane wall and a hole. Such a problem occurs during 
the process of filtration by a muitipore or similar devices. The proposed technique utilizes the Green 
function of the Stokes equation for the infinite plane wall to eliminate all unknowns on the plane wall. 
A system of two integral equations is derived, for the stresses on the surface of the body and for the velocity 
in the hole; this system is later reduced to a single equation. The proposed technique is applicable to a 
hole and a body of arbitrary shape and no symmetry is required. 
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1. I N T R O D U C T I O N  

The motion of a particle in the vicinity of a pore is of interest in investigating filtration and sampling 
of aerosols by a multipore. A particle moving near a wall is subjected to additional force and 
torque, known altogether as the "wall effect". These forces are due to the stresses formed on the 
wall. The presence of a hole in the wall adds to the complexity of the problem, in that the symmetry 
is distorted and the particle experiences a different force as its distance from the hole and direction 
of motion change. 

Dagan et  al. (1982a) have shown that, in the absence of additional boundaries, the flow through 
a circular orifice is little affected by its thickness. In most papers treating this problem, zero wall 
thickness has been assumed. Davis et  al. (1981) solved the axisymmetric problem of a point force 
approaching a circular hole along its symmetry axis by solving a dual integral equation on the wall, 
with an additional correction velocity term in the hole. Davis (1983) obtained results for the same 
problem, correct to the third order of the sphere's radius. His results agree well with later results 
for a sphere-to-hole radii ratio up to about 1. Dagan et  al. (1982b) solved the same problem, but 
for a sphere of  finite size, by constructing two different axisymmetric solutions, of Fourier-Bessel 
type, for both sides of the wall and matching them by requiring the continuity of the velocity and 
the normal components of the stress tensor across the hole. Their solution is given as truncated 
infinite series whose coefficients are determined by the satisfaction of the boundary conditions on 
a finite number of points on the sphere's surface (Ganatos et  al. 1980). Miyazaki & Hasimoto (1984) 
obtained a closed-form solution for a point force of arbitrary position and direction of motion in 
the vicinity of a circular hole. Recently, Yan et  al. (1987) applied a combined infinite series-integral 
equation method for the arbitrary motion of a finite sphere near a circular hole. In their solution, 
the velocity is given as a sum of the single-layer potential with the stress on the wall and an infinite 
series of spherical harmonics. The satisfaction of the boundary conditions and the truncation of 
the series and the infinite wall lead to a finite set of linear equations. All the above-mentioned 
solutions apply to cases in which a certain symmetry is required from the body. Dagan et  al. (1983) 
calculated the trajectories of neutrally buoyant and inertialess spheres which approach a circular 
hole in low Reynolds numbers. They used an order of magnitude analysis to estimate the 
hydrodynamic interaction of the spheres with the boundaries. They compared their calculations 
to experimental results and found good agreement. In a later paper, Wang et  al. (1986) studied 
the same problem but without neglecting the particles' inertia, with improved estimates of the 
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hydrodynamic interaction and with molecular attraction of the wall. These last two papers 
demonstrated the importance of the hydrodynamic interaction which, eventually, caused all the 
particles to enter the hole (in the absence of molecular forces). Dagan et al. (1988) dealt with the 
axisymmetric motion of a gas bubble at the exit of a circular orifice in the presence of a stagnant 
cap of insoluble surfactants. The unknown stresses and velocities on the surface of the drop were 
approximated by piecewise quadratic functions. The use of the multipole-series technique, as in Yan 
et al. (1987), required a great number of terms, due to the discontinuity of the velocity on the 
surface of the drop, and proved to be inefficient. 

On studying the problem we decided to develop a method for which no symmetry is required 
and for which the domain of integration does not have to be truncated. In formulating the problem, 
in the general non-symmetric case, as a boundary integral equation, two approaches may be taken. 
One may, as in Yan et al. (1987), represent the solution directly as a single-layer potential on the 
infinite wall and on the body's surface (see Ladyzhenskaya 1963) (the double-layer potential on 
the body's surface vanishes identically for rigid-body motions) and solve the equations for the stress 
on both surfaces. This approach has the advantage that the body can cross the hole's plane, but 
the disadvantage that the infinite wall has to be truncated. This may become an acute problem when 
different positions of the body, relative to the wall, are considered so that different truncations have 
to be made each time. Another approach, the Green function approach, taken by us, is to represent 
the solution with the aid of the Green function for the infinite plane wall. In this representation, 
both single- and double-layer potentials vanish on the wall and one is left with the single-layer 
potential on the body's surface and the double-layer potential, with the unknown fluid velocity, 
on the hole's plane. Two different solutions are constructed for the half space z > 0 and z < 0 
(figure 1), and equations are obtained by requiring the continuity of the velocity and the normal 
components of the stress tensor. The body can now be placed as far from the hole as necessary 
without having to modify the domain of integration. The main disadvantage of this proposed 
technique is that the body can not intersect the plane of the hole but, as we show, good accuracy 
is achieved even with a distance/radius ratio of 1.1, so that practically there are no limitations in 
calculating the trajectories of particles approaching the hole. 

In this paper we present results for spheres and for elongated ellipsoids. The results for spheres 
are in good agreement with previous results except for the transverse components of the force near 
the hole, for which our results are up to one order of magnitude higher than the results of Yan 
et al. (1987); this demonstrates the importance of the hydrodynamic interaction with the 
boundaries. The results for the ellipsoids are, to the best of our knowledge, the first to be reported 
in the literature. 

2. DERIVATION OF THE BOUNDARY INTEGRAL EQUATIONS 

Assuming the Reynolds number with respect to the body and the hole is small, Re ,~ 1, the flow, 
generated by the body's motion is considered a Stokes flow. We adopt the quasi-stationary 
assumption, according to which the flow is considered steady at every moment and the velocity 
of the body is taken to be the boundary conditions for the flow at the body's surface Y.t. Using 
the reciprocal theorem for Stokes flow it may be shown that, knowing the stresses on Y.~, arising 
from the six independent translations and rotations of the rigid body, the force and the torque on 
the body can be calculated for any Stokes flow in the same geometry. 

Z~.O 

wal I 

5:3 
f~z 

wall 

~'I~2 ~ I~ 3' 

5: I 

Figure 1. The geometry of the problem. 
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The governing equation is therefore the Stokes equation, written for viscosity # = 1: 

0p 0v,=0; 
A V, = ' Ox, 

Vilx, = V~, V, Ix, = 0; [1] 

where Vi is the velocity of  the fluid and V~ is the velocity of  the body. The fundamental solution 
of  Stokes equation is 

1 [  6,j ( x , -  y,)(xj-- yj)] 
U o ( x ' Y ) = ~  i x _ y l  ¢ I x - y l  3 , 

1 Yi - x~ 

q, (x, y)  = 4--~ I x - y 13" [2] 

X and Y are two field points and Ix - Y l  is the Euclidean distance between them. (U, q) satisfy 
[1] with respect to Y and (U, - q )  with respect to X. The stress tensor for the flow (V,p) is 

ov, ovj 6, 
°o(V, P) = -@xj + ~'~x ~ - oP" [31 

Uo(x, y)  is the kernel of  the single-layer potential. The kernel of  the double-layer potential is the 
stress tensor of  the fundamental solution (U, q): 

o#(Uk, qk)y = 3 (x, -- yi)(xj -- yj)(xk -- Yk) 
Ix - -y  I s [4] 

The solution of  [1] can now be written as: 

vk(x,=f  t5a 
n~ is the outward pointing unit normal vector and f is the stress difference across the wall Y3. The 
last term on the r.h.s, of  [5] vanishes on X3, because V~ is zero there, and vanishes on X~ since on 
X~, V = V ° is a rigid-body motion. One may solve [5] directly [such is the starting point in Yan 
et al. (1987)], but this requires the truncation of  the integral on the infinite domain X 3. We now 
describe the Green function method. 

The Green function of  the Stokes equation for the infinite plane X3 = 0 in the half space X3 I> 0 
(Blake 1971) consists of  the velocity field G, 

Gk,(X, Y) = --~-~ + R3 j + Glk,(X, y), [6] 

and the pressure field g, 

1 Rk l 
gk(X, y)  = ~ - ~  + gk(X, y), [7] 

where 

The velocity tensor G ~ is 

and 

and 

IJMF 16/3--K 

t Rk = Yk -- Xk, 

X~, = Xk for k = 1, 2, 
t 

X 3 ---~ - - X 3  

R =  l Y - x ' l .  

GIk,(X, y)  = (6k, 6 ,  -- 3k363j)~(X, y), 

X 3 0 {x3R , 6~ 

,t = 1,2, 

RiR3~ 
R 3 ]"  

[8] 

[9] 
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The pressure vector g t is 

and 
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g~ (x, y) = (6k, f ,j - ~k3~y3)gj(x, y) 

X 3 __±(Rq 
gj(x, y)  = 2nORj\R3]. [lO] 

The sum U~k + Gik is the flow field generated by a unit force in the half space X s > 0 in the 
presence of a wall at X 3 = O. I t  can be verified that 

(U,k+G,k) x3=o=(U,k+G..) ~ =0.  [11] y,>0 ,:o 

Therefore, the velocity in the half space z3 > 0, generated by the motion of  a body above the hole 
plane (x3 > 0) is given by the expression 

= f [Uki(Z, x) + Gk,(Z, x)lqgi(X) dx V~ ( z )  
I 

- n 3 [  V~(y)a,3(Uk + Gk, qk + gk)edY =-- Wk(Z) + W{ (z), [12] 
2 

q~ is the stress on Zt, n3 = - 1 on E2 and V~ is the unknown velocity on Z2. From [4] it follows 
that on Y~2, 

3 Z3(Zk -- Yk)(Zi -- Y~) 
Eik(Z,y)=ai3(Uk, qk)=4T; I z _X]5 [13] 

A lengthy calculation shows that also, for (G, g), 

ais(Gk, gk)y = E~(z, y). [14] 

Thus, 

W[ (z) = 2 fz  Eik(z, y)Vi(y) dy. [15] 
2 

Due to the theorem on the discontinuity of the double-layer potential (see Ladyzhenskaya 1963), 
we have: 

z3~olim W~ (z) = { Vk(z) Zz eZ2e Z3 [16] 

z3>0 

and due to [1 1], 

lira Wk(z) = 0.  [17]  
z3~0 

For the half space Z 3 < 0,  we define the velocity as 

V; (z) = --2 f~ E,k(z, y)V~(y) dy 
2 

and again 

The velocity V is now defined as 

z3-01im V ; ( z ) =  { Vk(z) zZ ~ Z3. 
z3<0 

vk" " f V ;  ( z )  z > 0  
tz) ---- "(V~(z) z < 0 .  

[18] 

[19] 

[20] 
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Defined in such a way, in terms of the unknown velocity in the hole, the vanishing of the 
velocity on the wall Y-3 and the continuity in the hole ~2 are automatically fulfilled. Likewise, 
the pressure can be defined in terms of the single'layer potential for the pressure, the Green 
function for the pressure and the stress on Y.~, and twice the double-layer potential for the pressure 
and the unknown velocity on E2. For z > 0, the pressure P + is given as the sum P + = p i .,]_ p 2 ,  

where: 

and 

Pl(z) = - ;~, [qk(Z, X) + gk(Z, X )]q'k(X ) dx 

Oq' V (y)njdy. P 2 ( z )  = 4 .Ix2 0yj 

P~(z) vanishes for z3 = 0; on Y~2 nj= 6j3 and Y3 = 0. Defining 

N,(z,y)= lz -y[----------~ ÷3 iz - y l  ~ J '  

[22] can now be written as 

Similarly, for z < 0 

[21] 

[22] 

[23] 

P2(z) = 2 I N~(z, y)V~(y) dy. [24] 

f .  
P-(z) = - 2 | N~(z, y) Vi(y) dy. [25] 

j~ 2 

The two unknowns are the stress ~p~ on Y~ and the velocity V~ on the hole ~2. The first integral 
equation is obtained by requiring the fulfillment of the boundary conditions on Y,~, i.e. by letting 
the field point Z in [12] approach the surface ~ we require: 

~ [Uki(Z,x)+Gki(Z,x)]tpi(x)dx +2f  Ek~(z,y)V~(y)dy=V°k, ZeX l .  [26] 
I 2 

The second equation is obtained by requiring the continuity of the normal components of the stress 
tensor of the flows (V +, P+) and (V-, P - )  in the bole, i.e. 

lim oi3(V +, P+) = lim g,3 (V-, P-).  [27] 
z3~0 z3~0 
z3>0 z3<0 

In the appendix we prove that the continuity of the velocity components in the hole ([16] 
and [19]) and the above requirements [27] are sufficient conditions for the unique determination 
of the solution in both sides of the wall-hole plane. The limiting process [27] is not straightforward 
since the kernel Ni(z,y) in [24] and [25] and the space derivatives of E,~(z,y) in [15] and [18] 
have singularity 1 / I z - y  13, which is not integrable on the hole plane. However, this difficulty 
can be overcome by performing integration by parts, if only Vi is smooth enough. This is 
described in the next section. By separating the flow (V +, P+) according to [12], [21] and [22], we 
obtain: 

where 
f Eo.(x,z)tPj(x)dx=-f~ Du(1/ Iz -y l )~(y)dy ,  z ~Y~2; [28] 

I 2 

( ~2 ~2 a2 

Equations [26] and [28] form the system to be solved. 

[29] 
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3. D I S C R E T I Z A T I O N  OF THE EQUATIONS 

Equation [28] cannot be discretized directly due to its strong singularity, however, since 1 ~Iv, .... ~' ~, 
is a harmonic function we have 

0 2 1  ( 02 c~2 ~ 1  

0z23 I z - Y l = - \-~z Z~ + -~z ~,} t z - Y l 

c~2 02 02 &2 82 
D22 = ~ + 2 Oz 2 ; D,2 = D2, = Oz, &-----~2 ' 

It then follows that: 

D33 = 2 + ; 

D U is a symmetric operator. 

Di3 = 0 for i # 3; D3j = 0 for j # 3. 

The analytical solution for the field generated by a point force, located above a circular hole 
(Davis et  al. 1981), shows that both the vertical and horizontal components of the fluid velocity 
in the hole vanish on the edge of  the hole. We divide the hole into triangles and an approximation 
for the velocity is sought in terms of linear base functions that vanish on the edge, see figure 2. 
For each triangle vertex, which is not on the edge, a linear function h ( y )  is defined such that it 
equals 1 on this vertex and zero on all the other. Such functions are continuous throughout the 
hole, vanish on the edge and have piecewise continuous first-order derivatives• In order to reduce 
the singularity of [28], the Galerkin method is used with the same base functions. Two integrations 
by parts are performed, the singularity is reduced to 1 / I z - y [ and the symmetry of D U is preserved. 
This integrable singularity is eliminated by transforming the double surface integral to a double 
path integral. The matrix form of the r.h.s, of [28],/), consists of submatrices 21~(k, l);j, of order 
3 x 3, representing the interaction between the kth  and the lth vertices and having the following 
form: 

~ , , ( k , t ) = ~  (2.4 mA. + B..&)I.., [30a] 

1 ~ mA.+ 2BmB.)I.m, m 2 2 ( k , l ) = ~  (Ak ; k ; [30b] 

Figure 2. An element in the hole, corresponding to the 
node 0. 

"\\ 

Figure 3. An element on the surface of the body, composed 
of several triangles. 
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[30c] 

2~t33 (k, I)= 1 ~ ~ (A~A~ + B~B~)Im. [30d] 

The summation is taken over all triangles m containing the vertex k, and all triangles n containing 
the vertex l; 

l , ,~=- fL fL( l z -y ldz ,  dy ,+lz -y l~2dy2) .  [31] 
m n 

The integration is performed over the circumference of the mth and nth triangles. A~, B~ and C~ 
are the coefficients defining the kth base function on the ruth triangle: 

hk(y)_ k B~y2+C k -- Amyl + ,~. 

The surface of the body is divided into elements, each of which consists of several flat triangles 
which have their vertices on the actual surface of the body, see figure 3. The elements are therefore 
not planar. The base functions are taken to be constant on each element. Though, perhaps, not 
the best approximation for a sphere, this method is easily applied to non-regular geometries, 
especially if the surface of a body is given in terms of a finite number of points. The surface of 
the sphere was divided into 396 triangles, comprising 108 elements. 

Numerical calculations for this approximated sphere in an unbounded fluid yielded an error or 
1.5% for the forces and 4.5% for the torques. In the following, we shall compare numerical results 
with the above computed results for the approximated surface. The Galerkin method is used in 
[26] with the constant base functions. After integration, [26] and [28] assume the following form: 

[0+~).¢p+2.~~t.~p+ :vV=~0.} [32] 

f.7 + G and /~ are symmetric and positive definite matrices. /~ is well-conditioned, having a 
condition number of about 10. /~ depends, o f  course, on the arrangement of the elements 
composing the hole. Due to its well-conditioning, matrix ~ is easily inverted and system [32] is 
reduced to a single equation: 

[0  + ~ - 2. J~ . /~- ' .  gt]. tp = V °. [33] 

This matrix is symmetric and positive definite, its dimension is N x 3, N being the number of 
elements on the surface of the body. Equation [33] with 0 only corresponds to the case of a particle 
in an unbounded fluid, and with 0 and ~ to the case of an infinite plane wall. The term J~./3- i. g 
decreases fast as the particle moves away from the hole. 

4. RESULTS 

Computations were performed for a circular hole of radius R = 1, for approximated spherical 
bodies of radii R = 0.1, 0.5, 1 and 5, and for an approximated ellipsoid of axes A = B = 0.5 and 
C = 1, a n d  A = B -- 0.25 and C - 0.5. In the following, results will be presented for the translation, 
coupling and rotation tensors K, C and T. g and 1" are symmetric and negative definite. K U is the 
ith component of the force acting on a body moving in the j th  direction with unit velocity. T o. is 
the torque due to unit angular velocity. C# is the j th  component of the force due to rotation in 
the ith direction and the ith component of the torque due to translation in the j th  direction; it 
is, in general, not symmetric. 

In table 1 we show a comparison of results of computations with different sets of elements which 
compose the hole. For all six points of calculation the value of -Kzz is a monotonic decreasing 
function of the number of elements. Since the differences between cases c and d were not large, 
we decided to perform all the calculations with the set c, i.e. with 192 elements. For the 
approximation of the surface of the particles, spheres and ellipsoids, we used 108 elements 
composed of 396 triangles. The accuracy of the calculations depends, among other things, on the 
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Table 1. Convergence of  -g~/ lKz~ l; sphere R = 0.5, Z/R  = 1.1 

X 
No. of  

elements a 0 0.2 0.4 0.6 0.8 1 

(a) 1.4841 1.5195 1.6623 2.0553 3.4202 6.9929 
(b) 1.4741 1.5703 1.6400 1.9892 3.0329 6.2325 
(c) 1.4724 1.5055 1.6365 1.9750 3.0027 6.2264 
(d) 1.4702 1.5055 1.6359 1.9744 2.9989 6.1987 

aNumber of  elements in hole: ( a ) -96 ,  ( b ) - t 2 8 ,  (e) -192,  (d) -224.  

size and distance of  the elements in the hole relative to the size of  the particle. Therefore, because 
of  the high singularity of  the operator E as the body approaches the hole, some of  the singular 
terms are calculated via a semi-analytic method. Different calculation times were therefore needed 
for different locations and orientations of  the particles. Calculations were performed on a CDC 
computer Cyber 180/855. The time needed for the calculation of the three resistance tensors K, 12 
and T for the sphere was 150-170 CPU s. In table 2, a comparison is made for the axisymmetric 
case (a sphere is located along the hole's symmetry axis and moves vertically) with previous results. 
The numerical values are the ratio -Kz~/I Kz~[, Kz~ is the value for an unbounded fluid. We have 
used for the "approximated" body the value Kz~ = -18 .576 .  R, calculated by our method, which 
differs from the perfect sphere value of  6nR by 1.5%. Results are given for different sphere radii 
R and for different Z / R  ratios, Z being the distance of  the sphere's center from the plane. The values 
for R = 0.5 are shown in figure 4 and for R = 0.1 in figure 5. Calculations for R =0.1 were 
performed with small elements near the center of  the hole, whereas in the other cases the areas 
of  the elements were more or less equal. This explains the better results obtained in this case. In 
table 3, results are given for - K ~ / I K ~ I ,  for R = 0.5 and for the center of  the body located at 
distances Xf rom the hole's symmetry axis. Comparison is made with the results o fY an  et al. (1987); 
however, since their results are given on a graph, the values could not be discerned accurately. The 
right-hand column shows the ratio for the wall effect KWz with no hole, as calculated from [33] when 
the matrix 2 . / ~ . / 3 - 1 . / ~ t  is omitted. These results are compared with the analytical results of  
Happel & Brenner (1973). For  Z / R  = 1.1 the difference between our results and Yan et al. (1987) 
is 5.5%, and the difference between our results and the theoretical results in the absence of  the wall 
is 4.4%. These results are presented in figure 6. The rise in the force occurs mainly near the edge 
in the range 0.8 < x < 1.2. 

In table 4 we present results for gx,./Ig~l. Since all the terms are positive, a particle which 
moves parallel to the wall towards the center of the hole experiences a force directed towards the 
wall. If it moves towards the hole plane it experiences a force directed towards the center of  the 
hole. Our results are up to one order of  magnitude higher than the results of  Yan et al. (1987). 
Results of the same order of  magnitude were obtained for ellipsoids. The difference in results may 
stem from the small number of spherical harmonics, only four, used by Yan et al. to satisfy the 

Table 2. Axisymmetric case - Kz~ll K~ I; sphere. 

Z/R Ref. ~ 0.1 0.5 1 5 

10 

1.5 

1.1 

(a) 1.0738 1.1229 1.1240 1.1242 
(b) 1.0596 1.1240 1.1262 1.1262 
(c) 1.0723 1.1246 1.1259 1.1261 
(a) 1.0679 1.2590 1.2768 1.2800 
(b) 1.0532 1,2509 1:2795 1.2850 
(c) 1.0666 1.2618 1.2804 1.2837 
(a) 1.0553 1.4866 1.8710 2.0952 
(b) 1.0505 1.3919 1.8058 2.1200 
(c) 1.0540 1.4264 1.8654 2.1194 
(a) 1.0554 1.4938 2.1715 3.1059 
(b) 1.0504 1.3882 2.0334 3.1535 
(c) 1.0523 1.4205 2.1042 3.1530 
(a) 1.0558 1.4724 2.4893 8.3893 
(b) 1.0503 1.3777 2.2867 8.9400 
(c) 1.0513 1.3946 2.3600 8.4700 

a(a) Present work; (b) Dagan et al. (1982b); (c) Yan et aL (1987). 
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Figure 4. The axisymmetric case. (a) Present work; 
Co) Dagan et aL (1982b); (c) Yen eta?. (1987). 
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Figure 5. The axisymmetric case. (a) Present work; 
CO) Dagan et al. (1982b); (c) Yah et al. (1987). 
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Figure 6 . - K .  vs the distance from the center. 
(a) Z/R = 1.1; Co) Z/R = 1.25; (c) Z/R = 1.5; (d) Z/R == 2. 
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Figure 7. The transverse force, Kx,/l g~ I. 

Table 3. -K~/ IK:~  [; sphere R = 0.5. 

ZIR  Ref? 

X 

0 0.5 0.75 1 2 (30 

I0 (a) 1.123 
Co) 1.125 

4 (a) !.322 
Co) 1.30 

2 (a) 1.487 
Co) 1.426 

1.5 (a) 1.494 
Co) 1.421 

1.1 (a) 1.472 
CO) 1.3946 

1.123 1.123 1.123 1.123 1.124 
1.100 I.I00 LI00 I.I00 1.126 
1.329 1.336 1.344 1.367 1.373 
1.300 1.300 1.300 - -  1.380 
1.585 1.705 1.848 2.089 2.099 
1.450 L550 1.650 - -  2.i26 
1.682 1.985 2.449 3.125 3.139 
1.600 1.900 2.500 -- 3.205 
1.766 2.606 6.226 10.921 10.928 
1.700 2.600 - -  - -  11.459 

Z--distance from the 
"(a) Present work; CO) 

Table 4. 

wall plane, X----distance from the hole center. 
Yan et aL (1987), fight-hand column--analytical. 

Transverse force K~:/IK~ I; sphere R = 0.5 

X 

Z / R  Ref? 0 0.2 0.4 0.6 0.8 1 1.2 1.4 

2 (a) 0 0.0314 0.0606 0.0838 0.0951 0.0904 0.0722 0.0497 
CO) 0 0.0150 0.0200 0.0300 0.0350 0.0300 0.0200 0.0200 

1.5 (a) 0 0.0524 0.1082 0.1661 0.2115 0.2118 0.1569 0.0899 
CO) 0 0.0300 0.0500 0.0600 0.0600 0.0500 0.0400 0.0300 

1.25 (a) 0 0.0632 0.1384 0.2365 0.3535 0.4000 0.2781 0.1306 
CO) . . . . . . . .  

1.1 (a) 0 0.0679 0.1562 0.2940 0.5446 0.7823 0.4807 0.1732 
CO) 0 0.0400 0.0700 0.0800 0.0800 0.0600 0.0500 0.0400 

"(a) Present work; CO) Yen et al. (1987). 
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Figure 8. The transverse force, Kx~/IK~I. 
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boundary conditions on the surface o f  the sphere. Such a small number, which is enough for the 
other terms, may prove to be insufficient for the transverse components .  This component  o f  the 
force is important for the collection efficiency o f  the hole. A particle which moves  towards the hole 
in a quiet fluid will experience a considerable additional force directed towards the wall. If, on the 
other hand, the particle is immersed in a flow and lags after it due to its inertia, this additional 
force will be directed away from the wall, thus decreasing the collection efficiency. This 
phenomenon was reported by Dagan et al. (1983). The results for spheres o f  radii R = 0.1 and 
R = 0.5 are shown in figures 7 and 8. The domain o f  significance for R = 0.1 is much narrower 
than for R = 0.5. Large differences also occur in the values for Cy,; given in table 5. 

We now present results for elongated ellipsoids. Let O be the angle which the symmetry axis 
o f  the ellipsoid forms with the X3 axis when rotated about the X2 axis. The values o f  the resistance 
tensors, calculated by our numerical method for an unbounded fluid and an ellipsoid with axes 
C = 1 and A = 0.5 are K,~ = - 11.182 and Kx~ = - 12.775 for O = 0. For O = n/2  these values are 
interchanged. The analytical values are K~  = - 11.347 and Kx~ = - 12.996, a difference o f  1.7%. 
Our value for the rotation term Tyy = - 8 . 9 3 1 2  is 5.5% smaller than the analytical value (Happel 
& Brenner 1973). In table 6 numerical tests are shown, with different sets o f  elements in the hole, 
for ellipsoids of  axes C = 1 and A = 0.5, O = 0 and n/2. As in table 1, the values decrease as the 
number o f  elements increases. Again we decided to use the same set o f  192 elements as before. The 

Table 5. Coupled force Cy, IIK~I " R; sphere R --0.5 

X 

Z/R Ref. a 0 0.2 0.4 0.6 0.8 l 1.2 1.4 

2 (a) 0 0.006 0.013 0.018 0.021 0.020 0.017 0.012 
(b) 0 0.000 0.006 0.010 0.010 0.010 0.006 0.004 

1.5 (a) 0 0.015 0.031 0.049 0.065 0.068 0.050 0.028 
(b) 0 0.000 0.010 0.020 0.040 0.040 - -  - -  

1.25 (a) 0 0.023 0.049 0.087 0.139 0.167 0.1125 0.050 
(b) . . . . . . . .  

I. 1 (a) 0 0.029 0.065 0.126 0.256 0.438 0.238 0.076 
(b) 0 0.005 0.015 0.040 0.080 0.120 - -  - -  

a(a) Present work; (b) Yan e t  al. (1987). 

Table 6. Convergence of -K=/IK~ I; ellipsoid A = 0.5 and C = 1 

X 
No. of 

O elements a 0 0.5 0.75 l 2 

0 (a) 1.5766 1.7293 2.0263 2.7366 3.5895 
0 (b) 1.5758 1.7270 2.0193 2.7260 3.5894 
0 (c) 1.5757 1.7268 2.0191 2.7257 3.5894 

~/2 (a) 2,0003 3.0319 4.5102 6.1833 22.3643 
7t/2 (b) 1.9957 3.0046 4.4970 6.1112 22.3632 
n/2 (c) 1.9954 3.0041 4.4956 6.1022 22.3630 

aNumber of elements in hole: ( a ) -  128, ( b ) -  192, (c ) -224 .  
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time of  calculation varied from 400 to 500 CPU s. In table 7 we present results for C = 1, A -- 0.5 
and O = ~t/2. The same results for O = 0 are shown in table 8. The same sets of  results for C = 0.5 
and A = 0.25 are shown in figures 9-11. In table 9 results are shown for C = 0.5 and A = 0.25 for 

= T[K~  + K .  ]. T h e  the transverse and the coupled force. The transverse force is normalized by K ® 1 = 
coupled force Cy~ is normalized by ~ / I K ~ '  T~I to make it dimensionless. These results are 
presented also in figures 12 and 13. One should note the similarity between these two graphs and 
also their similarity to the transverse force on a sphere, figure 7. The same results but for O = 0 
are given in table 10 and in figures 14 and 15. The dependence of  the force on the distance from 
the center is similar for O =  ~/2  and O ffi 0 but the magnitude in the last case is smaller, since in 
the horizontal orientation the center of  the body is closer to the wall than in the vertical orientation. 
An interesting difference between the two orientations occurs in the sign of  Cy~. Ellipsoids with 

Table  7. El l ipsoid C = 1, A = 0.5 and  O = n/2 
X 

Z/A Force" 0 0.5 0.75 1 1.25 2 3 oo 

2 (a) 1.8522 1.9926 2.1493 2.3360 2.5194 2.8105 2.8496 2.8511 
(b) 1.4314 1.4279 1.4250 2.4231 1.4240 1 . 4 4 6 1  1.4636 1.4666 
(c) 1.1636 1.1749 1.1832 1.1918 1.2036 1.2494 1.2617 1.2622 

1.5 (a) 1.9385 2.2892 2.7047 3.2615 3.9168 &7665 4.8213 4.8223 
(b) 1.5805 1.5913 1 . 6 0 1 1  1.6127 1.6246 1.6852 1.7139 1.7167 
(c) 1.2319 1.2898 1.3270 1.3510 1.3809 1 . 5 2 7 1  1.5499 1.5504 

1.25 (a) 1.9757 2.6123 3.4156 4.5261 6.7045 8.7585 8.8242 8.8249 
(b) 1.6898 1.7354 1.7757 1.8272 1.8680 1 . 9 8 3 1  2.0200 2.0223 
(c) 1.2823 1.4325 1.5370 1.5792 1 . 6 2 7 1  1.9466 1.9785 1.9790 

1.1 (a) 1.9957 3.0046 4.4970 6.1112 16.0313 22.3632 22.4360 22.4362 
(b) 1.7715 1.8722 1.9670 2.1096 2.2301 2.4264 2.4697 2.4721 
(c) 1.3201 1.6116 1.8724 1.9348 2.0051 2.6175 2.6572 2.6577 

"(a) -K=IIK~h (b) - K . x / I / ~ l ;  (¢) -T. I IT; I I  

Table  8. Ell ipsoid C =  1, A = 0 , 5  and O = 0  

X 

Z/C Force" 0 0.5 0.75 1 1.25 2 3 oo 

2 (a) 1.431 t 1.4463 1.4624 1.4803 i 1.4965 1.5322 1.5309 1.5322 
(b) 1.2582 1.2562 L2545 1.2530 1.2525 1.2555 1.2595 1.2616 
(c) 1.0584 1.0583 1.0583 1.0584 1.0587 1.0598 1.0577 1.0602 

1.5 (a) 1.5271 1.5855 1 . 6 5 6 1  1 . 7 3 9 1  1.8086 1.8845 1.8949 1.8956 
(b) 1.3657 1.3640 1.3613 1 . 3 5 9 1  1 . 3 6 1 1  1.3782 1.3870 1.3895 
(c) 1.0759 1.0787 1.0809 1.0827 1 . 0 8 5 1  1.0896 1.0902 1.0902 

1.25 (a) 1.5634 1.6726 1.8373 2,0832 2.2872 2.4327 2.4440 2.4432 
(b) 1.4540 1 . 4 6 3 1  1 . 4 6 9 1  1 . 4 7 0 1  1.4814 1.5225 1.5345 1.5369 
(c) 1.0921 1.1039 1 . 1 1 6 1  1.1260 1.1343 1.1440 1.1445 1.1446 

1.1 (a) 1.5758 1.7270 2.0193 2.7260 3.3463 3.5894 3.6007 3.5924 
(b) 1.5220 1.5517 1.5885 1.6165 1.6508 1.7254 1.7394 1.7416 
(c) 1.1043 1.1292 1.1672 1.2105 1.2362 1.2524 1.2529 1.2532 

"(a) - K . / I K = ~  I; (b) - K x x / I K x ~  I; (c) - T.II T~I. 

Ellipsoid - C=0.5. A=0.25; 
horizontal orientation 
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Figure 10. -K,,/IK~I; dlipsoid (9 = x / 2 .  
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Table 9. Ellipsoid C = 0.5, A = 0.25 and ~9 = n/2 

X 

ZIA Force a 0 0.5 0.75 1 1.25 2 

2 (a) 0 0.1153 0.1727 0.1778 0.1138 0.00 
(b) 0 0.0951 0.1698 0.1853 0.1063 0.00 

1.5 (a) 0 0.1500 0.2755 0.3280 0.1996 0.00 
(b) 0 0.1382 0.3393 0.4436 0.2382 0.00 

1.25 (a) 0 0.1688 0.3780 0.5120 0.3063 0.00 
(b) 0 0.1669 0.5531 0.8395 0.4340 0.00 

1.1 (a) 0 0.1800 0.4919 0.7314 0.4509 0.00 
(b) 0 0.1871 0.8242 1.4370 0.7574 0.00 

oo I oo oo (a) K<=/I K * I; (b) c > . : / I ,  dTff~:~. T,.S I. K = ~ [Kx~ + K= ]. 

Table 10. Ellipsoid C = 0.5, A = 0.25 and e = 0 

X 

Z/C Force ~ 0 0.5 0.75 1 1.25 2 

2 (a) 0 0.0412 0.0525 0.0483 0.0323 0.00 
(b) 0 -0.0105 -0 .0144 -0 .0125 -0.0000 - 0 . 0 0  

1.5 (a) 0 0.0709 0.1066 0.1046 0.0553 0.00 
(b) 0 -0 .0144 -0.0288 -0.0297 -0 .0096 -0 .00  

1.25 (a) 0 0.0872 0.1557 0.1830 0.0744 0.00 
(b) 0 -0 .0120 -0.0391 -0.0573 -0.0108 - 0 . 0 0  

1.1 (a) 0 0.0948 0.1941 0.3163 0.0900 0.00 
(b) 0 -0 .0072 -0 .0427 -0.1127 -0.0105 -0 .00  

. K ~ - ' r x  °° 4 -  K : ~ ] .  ~(a) KSIK~I; (b) C,.,I Ix/~TT,.I -~.-~x-  

E l l l p s o i d  - C=0.5, A=0,25; 
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oo. ao Figure 17. Cyx/~, ellipsoid 19 = O. 

O = 0, approaching the hole, will rotate clockwise in the direction of  increasing O, whereas those 
with O = n/2 will rotate in the direction of  decreasing O. In tables 11 and 12 we present the same 
results as in tables 9 and 10 but for C = 1 and A = 0.5. In table 13 the coupled force and torque 
Cyx/x/IK~, T~I is shown for C = 1, A = 0 . 5  and C =0.5,  A = 0.25 for O = 0  and O =n/2. The 
sign of  C ,  is opposite to that of  Cyz and its magnitude is smaller. For O = 0, Cyx is monotonically 
increasing with the distance from the center but for O = n/2 the behavior is quite complex and 
at x = 1.25 it even changes sign. In the range 0 ~< x ~< 1, fluid, which is pushed down the hole, drags 
the back side of  the particle downwards, whereas fluid which is pushed along the wall drags the 
front part of  the particle upwards. Around x = 1.25, more fluid is pushed from the hole forward 
than downward so that the sign of  the torque changes. Finally, for x > 1.25, the influence of  the 
hole diminishes, only the influence of  the infinite wall is felt and Cyx is again negative. It is 
interesting to note that in the case of  a sphere Cyx and Cyz are both positive. Thus, far from the 
hole, a sphere and an ellipsoid at O = 0, moving in the positive direction of  the X-axis, will rotate 
in the direction of  increasing O, whereas an ellipsoid at O = n/2 will rotate in the direction of  
decreasing O. 

Table 11. Ellipsoid C -- I, A -- 0.5 and O = n /2  

X 

Z/A Force a 0 0.5 0.75 1 1.25 2 

2 (a) 0 0.0890 0.1133 0.1180 0.1030 0.0279 
(b) 0 0.1104 0.1404 0.1431 0.1197 0.0222 

1.5 (a) 0 0.1852 0.2427 0.2645 0.2326 0.0403 
(b) 0 0.2720 0.3715 0.3951 0.3361 0.0353 

1.25 (a) 0 0.2881 0.3846 0.4486 0.4189 0.0491 
(b) 0 0.4808 0.7218 0.7839 0.7093 0.0456 

1.1 (a) 0 0.4011 0.5488 0.6633 0.7695 0.0554 
Co) 0 0.7423 1.2917 1.3700 1.3764 0.0537 

a(a) Kx,/IK®I; (b) Cy, l~~l. K ®_2[Kxx+ ® oo  

Table 12. Ellipsoid C = 1, A - - 0 . 5  and 19 = 0 

X 

Z/C Force' 0 0.5 0.75 I 1.25 2 

2 (a) 0 0.0150 0.0188 0.0193 0.0171 0.O00 
(b) 0 -0.0063 -0.0077 - 0.0074 - 0.0060 -0.000 

1.5 (a) 0 0.0493 0,0630 0.0614 0.0471 0.011 
(b) 0 -0.0206 -0.0265 -0.0245 -0.0162 -0.000 

1.25 (a) 0 0.0902 0.1293 0.1326 0.0884 0.013 
(b) 0 -0 .0342  -0 .0531 -0 .0542  -0 .0297  - 0 , 0 0 0  

1.1 (a) 0 0.1251 0.2117 0.2633 0.1438 0.014 
C o )  0 -0 .0338  -0 .0689  -0 .0948  -0 .0396  - 0 . 0 0 0  

"(a) r,,:/ IK®l; (b) C~:l  l~?:  r y ,  I. ® _ !  ® ® • ® K - 2 [ K ~ + K = ] .  
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Table 13. 

E. GAVZE 

C y x / ~  T~I for an ellipsoid. R = C for O = 0; R = A for O = n/2 
X 

Z/R C,A, O a 0 0.5 0.75 1 1.25 2 3 ~ 

2 (a) 0.0326 0.0320 0.0316 0.0314 0.0315 0.0334 0.0345 0.0346 
(b) -0.0752 -0.0645 -0.0532 -0.0428 -0.0381 -0.0594 -0.0733 -0.0746 
(c) 0.0222 0.0249 0.0264 0.0276 0.0300 0.0348 0.0348 0.0346 
(d) -0.0313 -0.0432 -0.0401 -0.0224 -0.0248 -0.0719 -0.0744 -0.0746 

1.5 (a) 0.0600 0.0616 0.0625 0.0633 0.0658 0.0739 0.0755 0.0753 
(b) -0.1129 -0.I000 -0.0768 -0.0508 -0.0352 -0.0960 -0.1203 --0.1214 
(c) 0.0289 0.0404 0.0520 0.0589 0.0681 0.0761 0.0755 0.0753 
(d) -0.0314 -0.0612 -0.0716 -0.0285 -0.0241 -0.1191 -0.1214 -0.1214 

1.25 (a) 0.0834 0.0950 0.1054 0.1123 0.1213 0.1387 0.1398 0.1394 
(b) -0.1396 -0.1398 -0.1176 -0.0565 -0.0205 -0.1344 -0.1672 -0.1682 
(c) 0.0315 0.0516 0.0825 0.1088 0.1311 0.1407 0.1396 0.1394 
(d) -0.0298 -0.0736 -0.1111 -0.0351 -0.0120 -0.1662 -0.1682 -0.1682 

1.1 (a) 0.1002 0.1275 0.1648 0.2007 0.2275 0.2569 0.2573 0.2569 
(b) 0.1582 -0.1858 -0.1429 -0.0525 0.0210 -0.1659 -0.2056 - 0.2065 
(c) 0.0321 0.0582 0.I134 0.1988 0.2485 0.2583 0.2570 0.2569 
(d) -0.0283 -0.0819 -0.1596 -0.0323 -0.0282 -0.2047 -0.2066 -0.2065 

a(a) C =  1, A =0.5, O =0; (b) C =  1, A=0.5,  O =n/2;  (c) C=0.5,  A=0.25,  O =0; (d) C =0.5, A=0.25, O = rc/'L 

5. CONCLUSION 

The boundary element method has been applied to a problem, to date treated by analytical or 
mixed analytical-numerical methods for spherical bodies only. Results, obtained for these cases, 
except for the transverse forces, are in good agreement with previous results, though no symmetry 
assumptions were made. Large differences occurred in the transverse components of the force 
which, we believe, are due to the method used in previous studies. New results are presented for 
the first time for ellipsoids and are, in fact, available for any desired geometry of the body and 
the hole. Moreover, though not applied here, the method can treat more than one hole without 
requiring additional disc memory, since the order of the "body-hole" interaction matrix is 
determined only by the number of elements on the body's surface. 

Acknowledgement--The author is indebted to the late Professor I. Gallily of the Department of Atmospheric 
Sciences of the Hebrew University of Jerusalem for suggesting the problem and for fruitful discussions. 

REFERENCES 

BLAKE, J. R. 1971 A note on the image system for a stokeslet in a no-slip boundary. Proc. Camb. 
phil. Soc. 70, 303-310. 

DAGAN, Z.,  WEINBAUM, S. & PFEFFER, R. 1982a An infinite-series solution for the creeping motion 
through an orifice of finite length. J. Fluid Mech. 115, 505-523. 

DAGAN, Z, ,  WEINBAUM, S. d~ PFEFFER, R. 1982b General theory for the creeping motion of a finite 
sphere along the axis of a circular orifice. J. Fluid Mech. 117, 143-170. 

DAGAN, Z., WEINBAUM, S. & PFEFFER, R. 1983 Theory and experiment of the three-dimensional 
motion of a freely suspended spherical particle at the entrance to a pore at low Reynolds number. 
Chem. Engng Sci. 38, 583-596. 

DAGAN, Z., YAN, Z. Y. & SHEN, H. 1988 The axisymmetric rise of a spherical bubble at the exit 
of an orifice in the presence of a stagnant cap of insoluble surfactants. J. Fluid Mech. 190, 
299-319. 

DAVIS, A. M. J. 1983 Force and torque formulae for a sphere moving in an axisymmetric Stokes 
flow with finite boundaries: asymmetric stokeslets near a hole in a plane wall. Int. J. Multiphase 
Flow 9, 575-608. 

DAVIS, A. M. J., O'NEIL, M. E. & BRENNER, H. 1981 Axisymmetric Stokes flows due to a rotlet 
or a stokeslet near a hole in a plane wall: filtration flows. J. Fluid Mech. 103, 183-205; 111, 
499-500 (corrigendum). 

GANATOS, P., P~rr-ER, R. & WEINBAUM, S. 1980 A strong interaction theory of the creeping motion 
of a sphere between plane parallel boundaries. Part 2. Parallel motion. J. Fluid Mech. 99, 
755-783. 



A BOUNDARY INTEGRAL EQUATION SOLUTION OF BODY-HOLE INTEKACTIONS .543 

HAPPEL, J. & B R E ~ ,  H. 1973 Low Reynolds Number Hydrodynamics. Noordhoff, Groningen, 
The Netherlands. 

LADYZHENSKAYA, O. A. 1963 The Mathematical Theory of  Viscous Incompressible Flow. Gordon 
& Breach, New York. 

MIYAZAKI, T. & HASIMOTO, H. 1984 The motion of  a small sphere in fluid near a circular hole in 
a plane wall. J. Fluid Mech. 145, 201-221. 

WANG, Y., KAO, J., WEINnAUM, S. & PFEFFER, R. 1986 On the inertial impaction of  small particles 
at the entrance of  a pore including hydrodynamic and molecular wall interaction effects. Chem. 
Engng Sci. 41, 2845-2864. 

YAN, Z. Y., WEINBAUM, S., GANATOS, P. & PFEFFER, R. 1987 The three dimensional hydrodynamic 
interaction of  a finite sphere with a circular orifice at low Reynolds number. J. Fluid Mech. 174, 
39-68. 

A P P E N D I X  

We prove now the continuity requirements [16], [19] and [27] for the uniqueness of  the solution. 
Let fl~ and f~2 be domains in R 3 such that t'l~n[12 = 0 .  Let Y.~ be the boundary of  t'l~ and Y~2 the 
boundary o f~2 .  Suppose that Y~lnY. 2 # O and that there exists a smooth surface Y3, Y3c Y~nY~2. 
We define a domain f~, [1 = [l~uf12u2:3, with its boundary Y~, X = Y~,uY~2/X3; ~ may be unbounded. 

Proposition 

Let (U,p)  be a solution of  the Dirichlet problem of Stokes equation in f~. Let (V ~, ql) be a 
solution in fll such that V~lz,/z3 = U lz, rz3 and (V 2, q2) a solution in ~ such that V2[z2/z3 = U Iz2/z3. 
In case fll or fl 2 are unbounded we assume that these solutions vanish in infinity. Then, for (V', q~) 
and (V 2, q2) to coincide with (U,p)  in [1~ and [12 it is sufficient that 

V~ Iz~= 2 Vi [z3 [A.1] 

and that 

oij(v ~, q~)nj Iz, = o,~(V 2, q2)nj Iz,; [A.2] 

nj is the unit normal vector to the smooth surface ~3 pointing either towards ~ or towards fl 2. 

Proof 
Let D ( f )  be the energy dissipation function of  the flow f,  defined as 

afA 

D ( f )  = 0 if either f = 0 or if f is a rigid-body motion. Define the flow (V, q) in fl as 

E ( x )  = x e f l~.  
x e ~  2 ' 

Vi is continuous across X 3. Since (V~- U~)= 0 on X, we get, by applying Gauss' theorem: 

I_ { ( U , -  V,)[o#(U - r~,p - q') - o#(U - V2,p - q2)]}ny dx [A.4] D(U V) 
dz.  3 

(nj is the normal pointing towards f~2). Consequently, [A.1] and [A.2] imply that D(U - V) = O. 
Hence the difference U - V may be only a rigid-body motion but, since it vanishes on the boundary 
Y~, it must be zero. 


